

Friday 6 June 2014 - Afternoon

A2 GCE MATHEMATICS

4730/01 Mechanics 3

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4730/01
- List of Formulae (MF1)

Other materials required:

• Scientific or graphical calculator

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

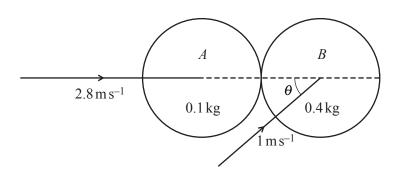
- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- This information is the same on the Printed Answer Book and the Question Paper.
- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

 Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.


- A particle P of mass 0.3 kg is moving on a smooth horizontal surface with speed $0.8 \,\mathrm{m\,s}^{-1}$ when it is struck by a horizontal impulse. The magnitude of the impulse is $0.6 \,\mathrm{N\,s}$.
 - (i) (a) Find the greatest possible speed of Pafter the impulse acts.
 - **(b)** Find the least possible speed of *P* after the impulse acts.

[3]

- (ii) In fact the speed of P after the impulse acts is $2.5 \,\mathrm{m\,s}^{-1}$. Find the angle the impulse makes with the original direction of travel of P and draw a sketch to make this direction clear. [4]
- One end of a light elastic string, of natural length 0.6 m and modulus of elasticity 30 N, is attached to a fixed point O. A particle P of weight 48 N is attached to the other end of the string. P is released from rest at a point dm vertically below O. Subsequently P just reaches O.

(ii) Find the magnitude and direction of the acceleration of *P* when it has travelled 1.3 m from its point of release. [4]

3

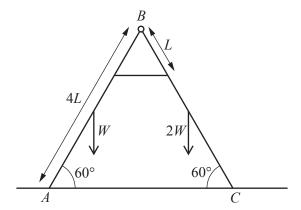
Two uniform smooth spheres A and B of equal radius are moving on a horizontal surface when they collide. A has mass 0.1 kg and B has mass 0.4 kg. Immediately before the collision A is moving with speed $2.8 \,\mathrm{m\,s^{-1}}$ along the line of centres, and B is moving with speed $1 \,\mathrm{m\,s^{-1}}$ at an angle θ to the line of centres, where $\cos \theta = 0.8$ (see diagram). Immediately after the collision A is stationary. Find

- (i) the coefficient of restitution between A and B, [5]
- (ii) the angle turned through by the direction of motion of B as a result of the collision. [4]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

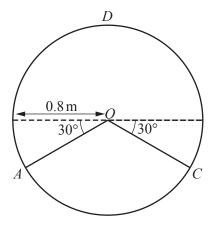

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2014 4730/01 Jun14

- A particle P of mass 0.4 kg is projected horizontally with speed $2 \,\mathrm{m\,s}^{-1}$ from a fixed point O on a smooth horizontal surface. At time ts after projection P is x m from O and is moving away from O with speed v m s⁻¹. There is a force of magnitude $1.6v^2$ N resisting the motion of P.
 - (i) Find an expression for $\frac{dv}{dx}$ in terms of v, and hence show that $v = 2e^{-4x}$. [5]
 - (ii) Find the distance travelled by P in the 0.5 seconds after it leaves O. [5]

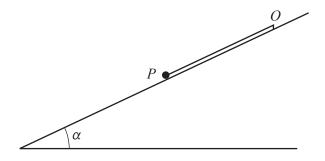
5



Two uniform rods AB and BC, each of length 4L, are freely jointed at B, and rest in a vertical plane with A and C on a smooth horizontal surface. The weight of AB is W and the weight of BC is 2W. The rods are joined by a horizontal light inextensible string fixed to each rod at a point distance L from B, so that each rod is inclined at an angle of 60° to the horizontal (see diagram).

- (i) By considering the equilibrium of the whole body, show that the force acting on BC at C is 1.75W and find the force acting on AB at A. [4]
- (ii) Find the tension in the string in terms of W. [4]
- (iii) Find the horizontal and vertical components of the force acting on AB at B, and state the direction of the component in each case. [3]

Question 6 begins on page 4.


6

A hollow cylinder is fixed with its axis horizontal. O is the centre of a vertical cross-section of the cylinder and D is the highest point on the cross-section. A and C are points on the circumference of the cross-section such that AO and CO are both inclined at an angle of 30° below the horizontal diameter through O. The inner surface of the cylinder is smooth and has radius $0.8 \, \mathrm{m}$ (see diagram). A particle P, of mass $m \, \mathrm{kg}$, and a particle Q, of mass $5m \, \mathrm{kg}$, are simultaneously released from rest from A and C, respectively, inside the cylinder. P and Q collide; the coefficient of restitution between them is 0.95.

- (i) Show that, immediately after the collision, P moves with speed $6.3 \,\mathrm{m\,s^{-1}}$, and find the speed and direction of motion of Q.
- (ii) Find, in terms of m, an expression for the normal reaction acting on P when it subsequently passes through D.

7

One end of a light elastic string, of natural length 0.3 m, is attached to a fixed point O on a smooth plane that is inclined at an angle α to the horizontal, where $\sin \alpha = 0.2$. A particle P of mass $m \log$ is attached to the other end of the string. The string lies along a line of greatest slope of the plane and has modulus of elasticity 2.45m N (see diagram).

(i) Show that in the equilibrium position the extension of the string is 0.24 m.

[2]

P is given a velocity of $0.3 \,\mathrm{m\,s^{-1}}$ down the plane from the equilibrium position.

- (ii) Show that *P* performs simple harmonic motion with period 2.20 s (correct to 3 significant figures), and find the amplitude of the motion. [6]
- (iii) Find the distance of P from O and the velocity of P at the instant 1.5 seconds after P is set in motion.

[5]

© OCR 2014 4730/01 Jun14

Answer		Marks	Guidance		
1	(i)	realising impulse must be in same direction as velocity, or opposite max speed 2.8 (m s ⁻¹) min speed 1.2 (m s ⁻¹)	M1 A1 A1 [3]	0.8 +/- 0.6/0.3 - 1.2 is wrong	various methods
	(ii)	Impulse momentum diagram $\cos \theta = \frac{0.6^2 + 0.24^2 - 0.75^2}{2 \times 0.6 \times 0.24}$ $\theta = 120^{\circ} \text{ (2.098 rad)}$	M1 A1 M1	Triangle with sides labelled 0.24, 0.6 and 0.75 or 0.8, 2 and 2.5 accept 59.8° (1.04 rad)	Allow M1 if positions wrong. Diagram must be correct. $v_x = 0.8 + 2\cos\theta$ M1 either $v_y = 2\sin\theta$ and correct diag A1 both Square, add, giving $1.61 = 3.2\cos\theta$ M1 $120.(21)A1$
		angle shown correctly	A1 [4]	consistent with their θ ; dep M1A1M1	120.(21)A1
2	(i)	By energy	M1*	Attempt at elastic energy	Allow M1 for $\frac{30y^2}{(2)\times0.6} = kd$
		$\frac{30(d-0.6)^2}{2 \times 0.6} = 48 \times d$ $25d^2 - 78d + 9 = 0$ or $30d^2 - 93.6d + 10.8 = 0$	*M1	get 3 term quadratic and attempt to solve	$\frac{30x^2}{2 \times 0.6} = 48(x + 0.6)$ allow 1 slip or $25x^2 - 48x - 28.8 = 0$
		(d =) 3 (m)	A1 [4]	ignore $d = 0.12$, unless given as answer	(x =) 2.4 leading to $(d =) 3$
	(ii)	Use $F = ma$ $48 - \frac{30 \times (3 - 0.6 - 1.3)}{0.6} = (\pm) \frac{48}{g} a$	M1 A1ft	ft their '3'	allow missing <i>g</i> , allow 1.3 or 0.6 to be omitted Using energy:
		(a =) (+/-) 1.43	A1	1.4291666	$a = v \frac{dv}{dx} = \frac{g}{40} (50x - 72)$ M1A1
		upwards	A1 [4]	depends on a being right	UA 40

Answer		Marks	Guidance		
3	(i)	Using conservation of momentum along loc $0.1 \times 2.8 + 0.4 \times 1 \times 0.8 = 0.4 \times b$ Using NEL $b - 0 = -e(1 \times 0.8 - 2.8)$ e = 0.75	M1 A1 M1 A1 A1 [5]	3 (or 4) terms, correct dimensions Vel diff after = e x vel diff before	Allow sign errors, (sin/cos) may see $b = 1.5$ Allow $\pm e$
	(ii)	$b(perp) = 0.6$ $\tan \beta = \frac{b(perp)}{\text{their 1.5}},$ angle turned through is $36.9^{\circ} - \beta$ $= 15.1^{\circ} (0.262 \text{ rad})$	B1 M1* *M1 A1 [4]	β = 21.8°; ft 1.5 from (i) Must be 36.9° – their β (soi)	May be on diagram 21.8014(0.381 rad) 36.86989 15.068 scB1 for 165° after B1M1
4	(i)	Use $F = mv \frac{dv}{dx}$ $-4v = \frac{dv}{dx}$ $-4x = \ln v + c$ $0 = \ln 2 + c$ $\ln \frac{v}{2} = -4x$ $v = 2e^{-4x}$	M1 A1 M1 M1 A1 [5]	expression for $\frac{dv}{dx}$ required get (+/-) $Ax = \ln v + c$ valid attempt to find c need a step leading to given answer AG	Allow sign error, missing m or g inc
	(ii)	$e^{4x} dx = 2 dt$ $\frac{1}{4} e^{4x} = 2t + c$ $\frac{1}{4} = 0 + c$ $e^{4x} = 4(1 + \frac{1}{4})$ $x = \frac{1}{4} \ln 5$	M1* A1 *M1 *M1 A1 [5]	Write v as $\frac{dx}{dt}$ and separate variables must have c or use limits valid attempt to find c or subst limits find x when $t = 0.5$ - need to remove exp; allow even if no c Accept 0.402(359)	$dv/4v^{2} = -dt$ $\frac{1}{v} = 4t + \frac{1}{2}$ $\frac{dx}{dt} = \frac{2}{8t+1} \text{ OR } t = 0.5 \text{ gives } v = 0.4$ $x = \frac{1}{4}\ln(8t+1) + c \text{ OR } -4x = \ln 0.2$ $x = \frac{1}{4}\ln 5$
5	(i)	Take moments about A for whole body $Wx2L\cos 60^{\circ} + 2Wx6L\cos 60^{\circ} = Rx8L\cos 60^{\circ}$ $R = 1.75W$ $S = 1.25W$	M1 A1 A1 B1 [4]	Correct 3 terms needed; dim correct cos60° may be omitted at least 1 correct step to show given answer	Allow sign errors, <i>W</i> /2 <i>W</i> , cos/sin, <i>R</i> is reaction at <i>C S</i> is reaction at <i>A</i> For less efficient methods, M1 can only be earned when equation with one unknown, R, is reached.

Answer		Marks	Guidance	
(ii)	Take moments about <i>B</i> for equil of <i>BC</i> $TxL\sin 60^{\circ} + 2Wx2L\cos 60^{\circ} =$	M1*	Correct 3 resolved terms needed; dim correct; or for <i>BA</i> $TxL\sin 60^{\circ} + Wx2L\cos 60^{\circ} =$	allow sign errors, W/2W, cos/sin,
			$1.25Wx4L\cos60^{\circ}$	
	Č .		accept T = 1.73W	
	$I = \sqrt{3}W$	A1 [4]	ассерt 1 – 1.73 w	
(iii)	Resolve vertically for AB Y + 1.25W - W = 0	M1		Weight and normal term must be for
	V = 0.25W downwards	AICAO	direction must be close	same rod
	X = V SW to left	Dir [o]	direction must be crear	
(i)	$\frac{1}{2}mv^2 = mg \times 0.8(1 - \sin 30^\circ)$	M1	Or with '5 m ' if for Q	allow g missing for M1.
	$v = 2.8 \text{ m s}^{-1}$	A1		Might see $v^2 = 0.8g$
	Speed of P and Q equal	B1ft	soi	
			Ft on velocity	p is vel of P , q is vel of Q , both to left
			Et an andonita	Allow $\pm e$
	p-q=-0.95(-2.8-2.8) $n=6.3 \text{ m s}^{-1}$	-	1	
	y solo mo g moves to left	111 [0]	and the state of t	
(ii)	By energy for <i>P</i> at top	M1	must have 3 terms	allow g missing, sign error
	$\frac{1}{2}m6.3^2 = \frac{1}{2}mv^2 + mg \times 1.6$	A1		
	$v^2 = 8.33$	A1	Soi	
	L[aa, L] = ma of top		must have 3 terms	allow g missing, sign error
	$ma + R = m \times \frac{8.33}{2}$	Alft	their v ²	
	0.8 R = 0.6125m	AICAO	Or 40m/80	
	K = 0.0123III		01 +3111/100	
	(iii)	(ii) Take moments about B for equil of BC $TxL\sin 60^{\circ} + 2Wx2L\cos 60^{\circ} = 1.75Wx4L\cos 60^{\circ} \text{ solve to get } T = \sqrt{3}W$ (iii) Resolve vertically for AB $Y + 1.25W - W = 0$ $Y = 0.25W, \text{ downwards } X = \sqrt{3}W \text{ to left}$ (i) $\frac{1}{2}mv^2 = mg \times 0.8(1 - \sin 30^{\circ})$ $v = 2.8 \text{ m s}^{-1}$ Speed of P and Q equal Use conservation of momentum $5mx2.8 - mx2.8 = 5mq + mp$ Use of NEL $p - q = -0.95(-2.8 - 2.8)$ $p = 6.3 \text{ m s}^{-1}$ $q = 0.98 \text{ m s}^{-1}$ Q moves to left	(ii) Take moments about <i>B</i> for equil of <i>BC</i> $TxL\sin 60^{\circ} + 2Wx2L\cos 60^{\circ} = 1.75Wx4L\cos 60^{\circ} \text{ A1}$ $solve to get$ $T = \sqrt{3}W$ A1 [4] (iii) Resolve vertically for <i>AB</i> $Y + 1.25W - W = 0$ $Y = 0.25W$, downwards $X = \sqrt{3}W$ to left A1 A1 [3] (i) $\frac{1}{2}mv^2 = mg \times 0.8(1 - \sin 30^{\circ})$ $v = 2.8 \text{ m s}^{-1}$ Speed of P and Q equal Use conservation of momentum $5mx2.8 - mx2.8 = 5mq + mp$ Use of NEL $p - q = -0.95(-2.8 - 2.8)$ $p = 6.3 \text{ m s}^{-1}$ $q = 0.98 \text{ m s}^{-1}$ Q moves to left A1 [8] (ii) By energy for P at top $\frac{1}{2}m6.3^2 = \frac{1}{2}mv^2 + mg \times 1.6$ $v^2 = 8.33$ Use $F = ma$ at top $mg + R = m \times \frac{8.33}{0.8}$	(ii) Take moments about B for equil of BC $TxL\sin60^\circ + 2Wx2L\cos60^\circ = 1.75Wx4L\cos60^\circ = 1.75Wx4L\cos60^\circ = 1.75Wx4L\cos60^\circ = 1.25Wx4L\cos60^\circ = 1.25W$

4730 Mark Scheme June 2014

Answer		Marks	Guidance		
7	(i)	$mg \times 0.2 = \frac{2.45m \times e}{0.3}$ $e = 0.24$	M1 A1 [2]	No errors; must show all numbers	allow sin/cos, wrong sign, missing g
	(ii)	Use $F = ma$ down slope $mgsin\alpha - \frac{2.45m(x - 0.3)}{0.3} = m\ddot{x}$ $\ddot{x} = -\frac{49}{6}(x - 0.54)$	M1	3 terms needed oe Accept 2.45/0.3 for ω^2	Allow sign error, sin/cos, missing g or m Could use x in place of $x - 0.3$, leading to $\dot{x} = -\frac{49}{6}(x - 0.24)$ (about $x = 0.24$) Or $x + 0.24$ in place of $x - 0.3$ leading
		SHM (about $x = 0.54$) $\omega = 7/\sqrt{6} (2.8577)$ $T = 2.20$ $a = 0.105 \text{ m} (0.1049795)$	A1 B1 B1CAO B1ft [6]	Dep M1A1. Must be in correct form, and ω^2 in simplified form Soi	to $\ddot{x} = -\frac{49}{6}x$ (about $x = 0$) May see $\omega^2 = 8\frac{1}{6}$ 2.1986568 NB Can find a by energy, leading to ω and T
	(iii)	Use of SHM eqn for distance $x = -0.0956(227)$ Dist from <i>O</i> is 0.444(377) (m) Use of SHM equation for velocity $v = -0.124$ (-0.123949)	M1 A1ft A1CAO M1 A1 [5]	$x = a\sin\omega t$ Their a $v = a\omega\cos\omega t$ must be clear velocity is towards O	Allow M1 for $x = a\cos\omega t$ Or -0.9553 or -0.09577 Allow M1 for $v = -a\omega\sin\omega t$ if consistent with x eqn for $\sin/\cos a$, ω Use of $v^2 = \omega^2(a^2 - x^2)$ will not gain A1 unless direction is established